Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-2200324

ABSTRACT

Establishing the rapid and accurate diagnosis of sepsis is a key component to the improvement of clinical outcomes. The ability of analytical platforms to rapidly detect pathogen-associated molecular patterns (PAMP) in blood could provide a powerful host-independent biomarker of sepsis. A novel concept was investigated based on the idea that a pre-bound and fluorescent ligand could be released from lectins in contact with high-affinity ligands (such as PAMPs). To create fluorescent ligands with precise avidity, the kinetically followed TEMPO oxidation of yeast mannan and carbodiimide coupling were used. The chemical modifications led to decreases in avidity between mannan and human collectins, such as the mannan-binding lectin (MBL) and human surfactant protein D (SP-D), but not in porcine SP-D. Despite this effect, these fluorescent derivatives were captured by human lectins using highly concentrated solutions. The resulting fluorescent beads were exposed to different solutions, and the results showed that displacements occur in contact with higher affinity ligands, proving that two-stage competition processes can occur in collectin carbohydrate recognition mechanisms. Moreover, the fluorescence loss depends on the discrepancy between the respective avidities of the recognized ligand and the fluorescent mannan. Chemically modulated fluorescent ligands associated with a diversity of collectins may lead to the creation of diagnostic tools suitable for multiplex array assays and the identification of high-avidity ligands.


Subject(s)
Collectins , Sepsis , Humans , Animals , Swine , Pulmonary Surfactant-Associated Protein D/chemistry , Mannans/metabolism , Ligands , Lectins/metabolism
3.
PLoS One ; 16(4): e0243333, 2021.
Article in English | MEDLINE | ID: covidwho-1183614

ABSTRACT

The emergence and quick spread of SARS-CoV-2 has pointed at a low capacity response for testing large populations in many countries, in line of material, technical and staff limitations. The traditional RT-qPCR diagnostic test remains the reference method and is by far the most widely used test. These assays are limited to a few probe sets, require large sample PCR reaction volumes, along with an expensive and time-consuming RNA extraction step. Here we describe a quantitative nanofluidic assay that overcomes some of these shortcomings, based on the BiomarkTM instrument from Fluidigm. This system offers the possibility of performing 4608 qPCR end-points in a single run, equivalent to 192 clinical samples combined with 12 pairs of primers/probe sets in duplicate, thus allowing the monitoring of SARS-CoV-2 including the detection of specific SARS-CoV-2 variants, as well as the detection other pathogens and/or host cellular responses (virus receptors, response markers, microRNAs). The 10 nL-range volume of BiomarkTM reactions is compatible with sensitive and reproducible reactions that can be easily and cost-effectively adapted to various RT-qPCR configurations and sets of primers/probe. Finally, we also evaluated the use of inactivating lysis buffers composed of various detergents in the presence or absence of proteinase K to assess the compatibility of these buffers with a direct reverse transcription enzymatic step and we propose several protocols, bypassing the need for RNA purification. We advocate that the combined utilization of an optimized processing buffer and a high-throughput real-time PCR device would contribute to improve the turn-around-time to deliver the test results to patients and increase the SARS-CoV-2 testing capacities.


Subject(s)
COVID-19/diagnosis , Microfluidic Analytical Techniques/methods , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Adult , COVID-19/virology , COVID-19 Testing/methods , DNA Primers , Diagnostic Tests, Routine/methods , Female , Humans , Male , MicroRNAs/genetics , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
EClinicalMedicine ; 28: 100590, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-908833

ABSTRACT

BACKGROUND: Complement pathway inhibition may provide benefit for severe acute respiratory illnesses caused by viral infections such as COVID-19. We present results from a nonrandomized proof-of-concept study of complement C5 inhibitor eculizumab for treatment of severe COVID-19. METHODS: All patients (N = 80) with confirmed SARS-CoV-2 infection and severe COVID-19 admitted to our intensive care unit between March 10 and May 5, 2020 were included. Forty-five patients were treated with standard care and 35 with standard care plus eculizumab through expanded-access emergency treatment. The prespecified primary outcome was day-15 survival. Clinical laboratory values and biomarkers, complement levels, and treatment-emergent serious adverse events (TESAEs) were also assessed. FINDINGS: At day 15, estimated survival was 82.9% (95% CI: 70.4%‒95.3%) with eculizumab and 62.2% (48.1%‒76.4%) without eculizumab (log-rank test, P = 0.04). Patients treated with eculizumab experienced a significantly more rapid decrease in lactate, blood urea nitrogen, total and conjugated bilirubin levels and a significantly more rapid increase in platelet count, prothrombin time, and in the ratio of arterial oxygen tension over fraction of inspired oxygen versus patients treated without eculizumab. Eculizumab-associated changes in complement levels, laboratory values, and biomarkers were consistent with terminal complement inhibition, reduced hypoxia, and decreased inflammation. TESAEs of special interest occurring in >5% of patients treated with/without eculizumab were ventilator-associated pneumonia (51%/24%), bacteremia (11%/2%), gastroduodenal hemorrhage (14%/16%), and hemolysis (3%/18%). INTERPRETATION: Findings from this proof-of-concept study suggest eculizumab may improve survival and reduce hypoxia in patients with severe COVID-19. Randomized studies evaluating the efficacy and safety of this treatment approach are needed. FUNDING: Programme d'Investissements d'Avenir: ANR-18-RHUS60004.

5.
Eur J Clin Microbiol Infect Dis ; 40(1): 197-200, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-647037

ABSTRACT

The Forensic Science Institute of the French "Gendarmerie Nationale" (IRCGN™) developed in 2015 an ISO 17025 certified mobile DNA laboratory for genetic analyses. This Mobil'DNA laboratory is a fully autonomous and adaptable mobile laboratory to perform genetic analyses in the context of crime scenes, terrorism attacks or disasters. To support the hospital task force in Paris during the peak of the COVID-19 epidemic, we adapted this mobile genetic laboratory to perform high-throughput molecular screening for coronavirus SARS-CoV-2 by real-time PCR. We describe the adaptation of this Mobil'DNA lab to assist in Coronavirus SARS-CoV-2 diagnosis.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Laboratories , Mobile Health Units , Forensic Sciences , High-Throughput Screening Assays , Humans , Paris , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL